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1.0 SUMMARY 

In this report, a discontinuous Galerkin time-domain (DGTD) method is developed to simulate 
high-power microwave (HPM) air breakdown phenomena, which are modeled by a coupled 
electromagnetic--plasma system.  In the coupled system, the electromagnetic fields are governed 
by Maxwell’s equations and the plasma is modeled by the five-moment fluid equations (Euler’s 
equations). The non-Maxwellian electron energy distribution function (EEDF) is used to 
calculate electron transport coefficients and describe the non-equilibrium collision reactions 
between electrons and neutral air particles.  The coupled Maxwell--Euler equations are solved by 
the DGTD method with high-order spatial and temporal discretizations, which are able to 
provide a sufficient resolution for the physical quantities in both space and time. Several 
numerical examples are presented to investigate the physical process and demonstrate the 
capability of the numerical method.  

2.0 INTRODUCTION 

When HPM pulses travel through air, the high energy of the pulses can ionize neutral air 
particles and cause air to break down. In this process, a huge number of free electrons are generated 
and heated up by the power supplied by the electromagnetic fields. The electron oscillation 
generates secondary fields which, when strong enough, can cancel a part of the HPM pulses being 
transmitted and cause the so-called HPM tail erosion and pulse shortening. This will severely limit 
the transmission of the HPM pulses in air and has been investigated by many researchers [1]-[11].  

To describe the HPM breakdown process, different models can be employed.  Based on the 
fact of the insulator-to-conductor transition during breakdown, a nonlinear conductivity model 
was developed in [12], where the material conductivity was assumed to be a nonlinear function 
of the electric field. In [13], a simplified plasma model considering particle collisions was 
employed.  In this model, the plasma velocity was treated as an unknown quantity governed by 
the momentum transfer equation with collision. The resulting coupled system was solved by a 
nonlinear finite-element time-domain (FETD) method. To include more physics, a plasma 
diffusion model was adopted and solved by a coupled DGTD method in [14], where the air 
breakdown and tail erosion were simulated by considering both the electron density and velocity 
as unknown quantities. To obtain a numerical solution with a higher fidelity, a five-moment 
plasma fluid model is adopted in this work, where the plasma density, velocity, and energy are 
all considered and described by three conservation laws obtained by taking the first three 
moments of the Boltzmann equation. To describe the non-equilibrium collision process between 
electrons and neutral particles, the transport coefficients are calculated by integrating the 
collision cross sections with the non-Maxwellian EEDF [9], [15].  

In the simulation of the coupled electromagnetic--plasma system, the finite-difference time-
domain (FDTD) method [11], [16] is most widely used because of its simplicity and high parallel 
efficiency. However, the stair-case approximation of the solution domain, the finite difference 
approximation of the fields and their derivatives, and the explicit leap-frog time-marching scheme 
used in the FDTD method result in an overall low-order accuracy, which requires an extremely 
dense mesh grid and an extremely tiny time step size in a simulation to achieve a desired accuracy. 
To overcome these issues, a coupled high-order DGTD scheme [17]-[21] is adopted in this report 
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to solve the coupled system equations. Using an unstructured mesh, high-order nodal basis 
functions and an explicit high-order time-marching scheme, the employed DGTD method is able 
to achieve a high-order accuracy in the spatial and temporal representations of the physical 
quantities.  Also, it is able to preserve the continuity of all components of the electromagnetic 
fields due to the application of the nodal basis functions [22], which is critical in maintaining the 
stability of a Boltzmann solver.  Moreover, the flexibility and efficiency of the DGTD method 
can be enhanced through the application of the dynamic h- and/or p-adaptation techniques [23], 
[24] and massive parallelization on a multi-core CPU cluster or a many-core graphic processing 
unit (GPU) platform [25], [26].  

This report is organized as follows. In Section 3.0, the five-moment fluid model is first 
introduced, followed by the description of the calculation of its source terms. The DGTD 
solution of the coupled Maxwell--Euler system is then presented.  The electromagnetic--plasma 
interactions and the resulting air breakdown, electromagnetic pulse tail erosion, plasma 
formation and shielding are simulated and given as numerical examples in Section 4.0 to 
demonstrate the physical process and validate the numerical method.  Conclusions are drawn in 
Section 5.0.  Note that in this report, only electrons are considered. The positive and negative 
ions are considered as immobile due to their large mass and therefore, the ion currents and their 
radiation are neglected. 
3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Plasma Model 

3.1.1 The Boltzmann & General Transport Equations 

The behaviors of electrons are governed by the Boltzmann equation [27]-[30], which reads 

߲݂
ݐ߲

൅ ࢜ ∙ ݂׏ ൅
ࡲ
݉e

∙ ݂࢜׏ ൌ ൬
߲݂
ݐ߲
൰

coll
(1) 

where ݂ ൌ ݂ሺ࢘, ࢜  ሻ denotes the electron distribution function defined in the seven-dimensionalݐ ,
phase space ሺ࢘, ࢜, ݐሻ, ݉e denotes the electron mass at rest, and ࡲ denotes the macroscopic force 
such as the electromagnetic (Lorentz) and gravitational forces.  In the rest of this report, ࡲ 
denotes the Lorentz force only, since the gravitational force is negligible when comparing with 
the Lorentz force in problems considered here. The operators ׏ and ࢜׏ denote the gradients 
taken in the physical space ࢘ ൌ ሺݖ ,ݕ ,ݔሻ and the velocity space ࢜ ൌ ൫ ݒ ௫, ݒ ௬, ݒ ௭൯, respectively. 
The right-hand side (RHS) of the Boltzmann equation is an abstract form representing the 
temporal variation of the electron distribution function due to collisions. 

In fluid models, the behaviors of various discharge particle species are described in terms of 
average, macroscopic, hydrodynamic quantities such as the particle density 

݊ሺ࢘, ሻݐ ൌ න݂ሺ࢘, ࢜,  d࢜ (2)	ሻݐ

the mean velocity 
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,ሺ࢘ࢁ ሻݐ ൌ 〈࢜〉 ൌ
1
݊
න݂࢜ሺ࢘, ࢜,  d࢜ (3)	ሻݐ

and the mean energy 

ࣟሺ࢘, ሻݐ ൌ
1
2
݉e〈ݒଶ〉 ൌ

݉e

2݊
නݒଶ݂ሺ࢘, ࢜,  d࢜ (4)	ሻݐ

In general, a macroscopically averaged quantity can be defined as 

〈Φሺ࢜ሻ〉 ൌ
1
݊
නΦሺ࢜ሻ	݂ሺ࢘, ࢜, d࢜	ሻݐ ൌ

,݂ሺ࢘	Φሺ࢜ሻ׬ ࢜, d࢜	ሻݐ

,ሺ݂࢘׬ ࢜, d࢜	ሻݐ
(5) 

ଶ

where Φ is some function of velocity, which can be a scalar, a vector, or a tensor.  In (3) and (4), 

Φ are taken as the microscopic velocity ࢜ and the microscopic energy 
ଵ ݉eݒଶ of a single electron, 

respectively. 

Multiplying the Boltzmann equation by Φሺ࢜ሻ and integrating over all velocity components 
yield the general transport equation 

නΦሺ࢜ሻ	
߲݂
ݐ߲
	d࢜ ൅නΦሺ࢜ሻ	࢜ ∙ d࢜	݂׏ ൅නΦሺ࢜ሻ	

ࡲ
݉e

∙ d࢜	݂࢜׏ ൌ නΦሺ࢜ሻ	൬
߲݂
ݐ߲
൰

coll
	d࢜ (6) 

By invoking the definition of the average quantity (5), the first term on the left-hand side (LHS) 
of (6) can be rewritten as 

නΦ	
߲݂
ݐ߲
	d࢜ ൌ

߲
ݐ߲
නΦ	݂	d࢜ ൌ

߲
ݐ߲
ሾ݊〈Φሺ࢜ሻ〉ሿ (7) 

Using the integration by parts, the second term of (6) is expressed as 

නΦ	࢜ ∙ d࢜	݂׏ ൌ නሾ׏ ∙ ሺΦ݂࢜ሻ െ ׏	݂ ∙ ሺΦ࢜ሻሿ	d࢜ (8) 

Since Φ࢜ is not a function of ࢘, ׏ ∙ ሺΦ࢜ሻ ൌ 0. The second term becomes 

නΦ	࢜ ∙ d࢜	݂׏ ൌ න׏ ∙ ሺΦ݂࢜ሻ	d࢜ ൌ ׏ ∙ නΦ݂࢜	d࢜ ൌ ׏ ∙ ሾ݊〈Φሺ࢘ሻ࢜〉ሿ (9) 

Applying integration by parts and the Gauss divergence theorem, the third term of (6) can be 
rewritten as 
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නΦሺ࢜ሻ	
ࡲ
݉e

∙ d࢜	݂࢜׏ ൌ න ൤࢜׏ ∙ ൬Φ
ࡲ
݉e

݂൰ െ ࢜׏	݂ ∙ ൬Φ
ࡲ
݉e
൰൨ d࢜	

ൌ
1
݉e

රΦ
ࡲ
݉e

݂	dࡿ௩ െ
1
݉e

න࢜׏ ∙ ሺΦࡲሻ	݂	d࢜ 
(10) 

where ࡿ௩ is the boundary of the velocity space at infinity. Since no particle travels at an infinite 
speed, ݂ ൌ 0  at ݒ → ∞  and the contour integral in (10) vanishes.  As a result, (10) becomes 

නΦ
ࡲ
݉e

∙ d࢜	݂࢜׏ ൌ െ
1
݉e

න࢜׏ ∙ ሺΦࡲሻ	݂	d࢜ ൌ െ
݊
݉e

࢜׏〉 ∙ ሺΦࡲሻ〉	

ൌ െ
݊
݉e

Φ࢜׏〉 ∙ 〈ࡲ െ
݊
݉e

〈Φ	࢜׏ ∙ 	〈ࡲ

ൌ െ
݊
݉e

Φ࢜׏〉 ∙  〈ࡲ

(11) 

In reaching (11), ࢜׏ ∙ ࡲ ൌ 0 is applied since the Lorentz force is divergence-free in the velocity 
space. 

The RHS of (6) is denoted as 

නΦሺ࢜ሻ	൬
߲݂
ݐ߲
൰

coll
	d࢜ ൌ ቆ

߲݊〈Φሺ࢜ሻ〉
ݐ߲

ቇ
coll

(12) 

at this moment, and will be discussed in the following sections. 

Finally, the general transport equation can be expressed as 

߲݊〈Φ〉
ݐ߲

൅ ׏ ∙ ሺ݊〈Φ࢜〉ሻ െ
݊
݉e

ࡲ〉 ∙ 〈Φ࢜׏ ൌ ቆ
߲݊〈Φ〉
ݐ߲

ቇ
coll

(13) 

which is the conservation equation for the density of the macroscopically averaged quantity 〈Φ〉. 

3.1.2 Five-Moment Plasma Fluid Model 

Plasma fluid models can be obtained by taking moments of the Boltzmann equation.  In this 
section, the five-moment fluid model is derived by taking the first three moments.  Higher-order 
fluid models, such as the ten-moment and the 13-moment models, can also be obtained in the same 
manner. 

3.1.2.1 The Particle Continuity Equation 

In (13), setting Φ ൌ 1 yields the particle continuity equation 

߲݊
ݐ߲

൅ ׏ ∙ ሺ݊ࢁሻ ൌ ൬
߲݊
ݐ߲
൰

coll
ൌ ሺߥi െ  aሻ݊ (14)ߥ
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where ߥi  and ߥa  stand for the ionization and attachment frequencies in the ionization and 
attachment collision processes, respectively, which can be physically interpreted as the number of 
particles created and annihilated per unit time per unit volume due to collisions. 

3.1.2.2 The Momentum Conservation Equation 

Taking Φ ൌ ݉ e࢜ yields the momentum conservation equation. In (13), 〈Φ〉 ൌ ݉ e〈࢜〉 
ൌ ݉ eࢁ and 〈Φ࢜〉 ൌ ݉ e〈࢜࢜〉. Let ࢜ ൌ ࢁ ൅ ࢗ , where ࢗ stands for the velocity fluctuation 
around the mean value ࢁ, we have 

〈Φ࢜〉 ൌ ݉e〈࢜࢜〉 ൌ ݉eሺ〈ࢁࢁ〉 ൅ 〈ࢗࢁ〉 ൅ 〈ࢁࢗ〉 ൅ ሻ〈ࢗࢗ〉 ൌ ݉eሺࢁࢁ ൅  ሻ (15)〈ࢗࢗ〉

Defining the (symmetric) pressure tensor 

ℙ ൌ ݉eනࢗࢗ	݂	d࢜ ൌ ݉e නሺ࢜ െ ሻሺ࢜ࢁ െ d࢜	݂	ሻࢁ ൌ ݉e݊〈ࢗࢗ〉 (16) 

yields 

〈Φ࢜〉 ൌ ݉eࢁࢁ ൅
1
݊
ℙ (17) 

The second term of (13) can be expressed as 

׏ ∙ ሺ݊〈Φ࢜〉ሻ ൌ ׏ ∙ ሺ݉e݊ࢁࢁ ൅ ℙሻ ൌ ݉e׏ ∙ ൬݊ࢁࢁ ൅
1
݉e

ℙ൰ (18) 

In the third term of (13), ࢜׏Φ ൌ ݉ e࢜࢜׏ ൌ ݉ eॴ, where ॴ is an identity tensor.  Therefore, the 
third term becomes 

െ
݊
݉e

ࡲ〉 ∙ 〈Φ࢜׏ ൌ െ
݊
݉e

ࡲ〉 ∙ ݉eॴ〉 ൌ െ݊〈ݍeሺࡱ ൅ ࢜ൈ࡮ሻ〉 ൌ െݍeሺ݊ࡱ ൅  ሻ (19)࡮ൈࢁ݊

where ݍe denotes the electron charge. 

Finally, the momentum conservation equation is obtained as 

ࢁ߲݊
ݐ߲

൅ ׏ ∙ ൬݊ࢁࢁ ൅
1
݉e

ℙ൰ ൌ
eݍ
݉e

ሺ݊ࡱ ൅ ሻ࡮ൈࢁ݊ ൅
1
݉e

൬
ࢁ߲݊
ݐ߲

൰
coll

ൌ
eݍ
݉e

ሺ݊ࡱ ൅ ሻ࡮ൈࢁ݊ െ  ࢁc݊ߥ
(20) 

where ߥc stands for the total collision frequency. 
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3.1.2.3 The Energy Conservation Equation 

The energy conservation equation can be obtained by taking Φ ൌ ଵ

ଶ
݉eݒଶ. In the first term of 

(13), 〈Φ〉 ൌ ଵ

ଶ
݉e〈ݒଶ〉 ൌ ࣟ and in the second term, ݊〈Φ࢜〉 ൌ ଵ

ଶ
݉e݊〈ݒଶ࢜〉 ൌ ࣟ .  Using the definition 

of the average quantity (5), we have 

〈ଶ࢜ݒ〉݊ ൌ නݒଶ࢜	݂	d࢜ ൌ නሺࢗ ൅ ሻࢁ ∙ ሺࢗ ൅ ࢗሻሺࢁ ൅ 	d࢜	݂	ሻࢁ

ൌ නݍଶࢗ	݂	d࢜ ൅ ࢁ2 ∙ නࢗࢗ	݂	d࢜ ൅
2݊
݉e

	ࢁࣟ

ൌ
2
݉e

ሺࡽ ൅ ℙ ∙ ࢁ ൅  ሻࣟࢁ݊

(21) 

In deriving the above expression, the definition of the pressure tensor (16) has been employed, and 
the heat flux vector is defined as 

ࡽ ൌ
݉e

2
නݍଶࢗ	݂	d࢜ ൌ

݉e

2
න|࢜ െ ૛ሺ࢜|ࢁ െ  d࢜ (22)	݂	ሻࢁ

As a result, the second term in the general transport equation becomes 

સ ∙ ሺ݊〈Φ࢜〉ሻ ൌ સ ∙ ሺ݊ࣟࢁ ൅ ℙ ∙ ࢁ ൅  ሻ (23)ࡽ

The third term in the general transport equation can be written as 

െ
݊
݉e

ࡲ〉 ∙ 〈Φ࢜׏ ൌ െ
݊
݉e

1
݊
නࡲ ∙ ࢜׏ ൬

1
2
݉eݒଶ൰ 	݂	d࢜ ൌ െනࡲ ∙ ࢜	݂	d࢜	

ൌ െනݍeሺࡱ ൅ ࢜ൈ࡮ሻ ∙ ࢜	݂	d࢜ ൌ െනݍeࡱ ∙ ࢜	݂	d࢜	

ൌ െݍeࡱ ∙  ࢁ݊

(24) 

Finally, the energy conservation equation can be expressed as 

߲݊ࣟ
ݐ߲

൅ ׏ ∙ ሺ݊ࣟࢁ ൅ ℙ ∙ ࢁ ൅ ሻࡽ ൌ ࡱeݍ ∙ ࢁ݊ ൅ ൬
߲݊ࣟ
ݐ߲

൰
coll

ൌ ࡱeݍ ∙ ࢁ݊ െ ܳe݊ (25) 

where ܳe stands for the electron energy loss frequency. 

Equations (14), (20), and (25) are the governing equations of the five-moment plasma fluid 
model.  The name “five-moment” refers to the five scalar quantities governed by the model, 
which are ݊, ܷ௫, ܷ௬, ܷ௭, and ࣟ.  

It should be noted that the equations obtained from the general transport equation are not closed. 
Due to the second term સ ∙ ሺ݊〈Φ࢜〉ሻ, the ݊-th moment equation will always introduce the (݊ ൅ 1)-
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th macroscopic moment.  As a result, any finite set of moment equations have more unknowns 
than equations. To obtain a closed model, some additional information, limiting assumption, or 
additional physical setting, is always needed. 

In the five-moment model, the higher-order moment, the heat flux vector ࡽ, is ignored, and the 
pressure tensor is assumed to be diagonal and isotropic ℙ ൌ ܲॴ, where ܲ is the scalar pressure 
defined as 

ܲ ൌ
1
3
trሺℙሻ ൌ

݉e

3
න trሾሺ࢜ െ ሻሺ࢜ࢁ െ d࢜	݂	ሻሿࢁ ൌ

݉e

3
න|࢜ െ  d࢜ (26)	݂	ଶ|ࢁ

in three dimensions. In a ܰ-dimensional problem, the factor 1/3 becomes 1/ܰ. In the above 
expression, tr stands for the matrix trace. From the ideal gas law, the pressure and the 
temperature are related by the equation of state ܲ ൌ ݊ ݇ Bܶ, where ݇B ൌ 8.617ൈ10ିହ eV/K is 
the Boltzmann constant and ܶ is the temperature in Kelvin. From (26), it can be seen that 

ܲ
݊
ൌ ݇Bܶ ൌ

1
݊
݉e

3
න|࢜ െ d࢜	݂	ଶ|ࢁ ൌ

1
݊
݉e

3
නሺݒଶ ൅ ܷଶ െ ࢜ ∙ ࢁ െ ࢁ ∙ ࢜ሻ	݂	d࢜	

ൌ
2
3
൬ࣟ െ

1
2
݉eܷଶ൰ 

(27) 

Therefore, the pressure and the energy are related by 

݊ࣟ ൌ
3
2
ܲ ൅

1
2
݉eܷ݊ଶ (28) 

Apparently, ݊ࣟ  stands for the total energy for ݊ particles, 
ଷ

ଶ
ܲ  and 

ଵ

ଶ
݉eܷ݊ଶ  stand for the total 

internal and kinetic energy for ݊ particles, respectively.  In general, 

݊ࣟ ൌ
ܲ

ߛ െ 1
൅
1
2
݉eܷ݊ଶ (29) 

where ߛ ൌ ሺܰ ൅ 2ሻ/ܰ is the ratio of specific heats, which equals to 5/3 for electrons in three 
dimensions and 1.4 for air particles. 

With the heat flux ignored and the scalar closure between the pressure and the energy assumed, 
the five-moment plasma fluid model is finally presented as 

߲݊
ݐ߲

൅ ׏ ∙ ሺ݊ࢁሻ ൌ ሺߥi െ  aሻ݊ (30)ߥ

ࢁ߲݊
ݐ߲

൅ ׏ ∙ ൬݊ࢁࢁ ൅
1
݉e

ܲॴ൰ ൌ
eݍ
݉e

ሺ݊ࡱ ൅ ሻ࡮ൈࢁ݊ െ  (31) ࢁc݊ߥ

߲݊ࣟ
ݐ߲

൅ ׏ ∙ ሾࢁሺ݊ࣟ ൅ ܲሻሿ ൌ ࡱeݍ ∙ ࢁ݊ െ ܳe݊ (32) 
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3.1.3 Collision Reactions, Transport Coefficients, & Electron Energy Distribution 
Function 

When electrons are pushed to move by the Lorentz force, they collide with neutral air 
particles frequently. Depending on the energy that different electrons possess, collision events 
may trigger different reactions. Generally, there are two major types of collisions, namely, elastic 
and inelastic collisions. In an elastic collision event, the electron collides with a neutral air 
particle (a nitrogen or an oxygen molecule, for example), gets bounced to some scattering angle 
depending on the angle of incidence and losses a part of its momentum and energy. For an 
inelastic collision, there are several possibilities. First, the electron may get attached to (absorbed 
by) the air particle and result in a negative ion, which is called an attachment reaction. Second, if 
the electron has a higher energy, it can excite the air particle, making the air particle rotate, 
vibrate, or get excited to a higher energy level. Such a collision process is called an excitation 
reaction. Third, if the electron has an even higher energy, it is able to kick out a new electron 
from the air particle, which is known as an ionization reaction. In this work, air is simply treated 
as 20% oxygen plus 80% nitrogen. Various collision reactions between the electron and the 
oxygen and nitrogen molecules are summarized in Table 1 and Table 2, respectively. In these 
two tables, ߝ௞ stands for the threshold (minimum) energy for the ݇-th collision reaction to take 
place. 

Table 1.  Electron–Oxygen Collision Reactions [31], [32] 

Index Collision Type Reaction Formula ߝ௞ (eV) 

O1 Three-body attachment e ൅ Oଶ ⟶ Oଶ
ି∗; Oଶ

ି∗ ൅ Oଶ ⟶ Oଶ
ି ൅ Oଶ 0 

O2 Two-body attachment e ൅ Oଶ ⟶ Oି ൅ O  0 

O3 Effective momentum transfer e ൅ Oଶ ⟶ e ൅ Oଶ  0 

O4 Rotational excitation e ൅ Oଶ ⟶ e ൅ Oଶሺrotሻ  0.02 

O5 Vibrational excitation e ൅ Oଶ ⟶ e ൅ Oଶሺv ൌ 1ሻ  0.19 

O6 Vibrational excitation e ൅ Oଶ ⟶ e ൅ Oଶሺv ൌ 1resሻ  0.19 

O7 Vibrational excitation e ൅ Oଶ ⟶ e ൅ Oଶሺv ൌ 2ሻ  0.38 

O8 Vibrational excitation e ൅ Oଶ ⟶ e ൅ Oଶሺv ൌ 2resሻ  0.38 

O9 Vibrational excitation e ൅ Oଶ ⟶ e ൅ Oଶሺv ൌ 3ሻ  0.57 

O10 Vibrational excitation e ൅ Oଶ ⟶ e ൅ Oଶሺv ൌ 4ሻ  0.75 

O11 Metastable excitation e ൅ Oଶ ⟶ e ൅ Oଶሺaଵ∆gሻ  0.977 

O12 Metastable excitation e ൅ Oଶ ⟶ e ൅ OଶሺbଵΣgାሻ  1.627 

O13 Metastable excitation e ൅ Oଶ ⟶ e ൅ OଶሺcଵΣuିAାΣuାሻ  4.5 

O14 Dissociative excitation e ൅ Oଶ ⟶ e ൅ Oሺ3Pሻ ൅ Oሺ3Pሻ  6.0 

O15 Dissociative excitation e ൅ Oଶ ⟶ e ൅ Oሺ3Pሻ ൅ Oሺ1Dሻ  8.4 

O16 Dissociative excitation e ൅ Oଶ ⟶ e ൅ Oሺ1Dሻ ൅ Oሺ1Dሻ  9.97 

O17 Ionization e ൅ Oଶ ⟶ 2e ൅ Oଶ
ା  12.06 
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Table 2.  Electron–Nitrogen Collision Reactions [33], [34] 

Index Collision Type Reaction Formula ߝ௞ (eV) 

N1 Elastic momentum transfer e ൅ Nଶ ⟶ e ൅ Nଶ  0 

N2 Rotational excitation e ൅ Nଶ ⟶ e ൅ Nଶሺrotሻ  0.02 

N3 Vibrational excitation e ൅ Nଶ ⟶ e ൅ Nଶሺv ൌ 1resሻ  0.29 

N4 Vibrational excitation e ൅ Nଶ ⟶ e ൅ Nଶሺv ൌ 1ሻ  0.291 

N5 Vibrational excitation e ൅ Nଶ ⟶ e ൅ Nଶሺv ൌ 2ሻ  0.59 

N6 Vibrational excitation e ൅ Nଶ ⟶ e ൅ Nଶሺv ൌ 3ሻ  0.88 

N7 Vibrational excitation e ൅ Nଶ ⟶ e ൅ Nଶሺv ൌ 4ሻ  1.17 

N8 Vibrational excitation e ൅ Nଶ ⟶ e ൅ Nଶሺv ൌ 5ሻ  1.47 

N9 Vibrational excitation e ൅ Nଶ ⟶ e ൅ Nଶሺv ൌ 6ሻ  1.76 

N10 Vibrational excitation e ൅ Nଶ ⟶ e ൅ Nଶሺv ൌ 7ሻ  2.06 

N11 Vibrational excitation e ൅ Nଶ ⟶ e ൅ Nଶሺv ൌ 8ሻ  2.35 

N12 Electronic excitation e ൅ Nଶ ⟶ e ൅ NଶሺA3,	v ൌ 0 െ 4ሻ  6.17 

N13 Electronic excitation e ൅ Nଶ ⟶ e ൅ NଶሺA3,	v ൌ 5 െ 9ሻ  7.00 

N14 Electronic excitation e ൅ Nଶ ⟶ e ൅ NଶሺB3ሻ  7.35 

N15 Electronic excitation e ൅ Nଶ ⟶ e ൅ NଶሺW3ሻ  7.36 

N16 Electronic excitation e ൅ Nଶ ⟶ e ൅ NଶሺA3,	v ൒ 10ሻ  7.80 

N17 Electronic excitation e ൅ Nଶ ⟶ e ൅ NଶሺBᇱ3ሻ  8.16 

N18 Electronic excitation e ൅ Nଶ ⟶ e ൅ Nଶሺaᇱ1ሻ  8.40 

N19 Electronic excitation e ൅ Nଶ ⟶ e ൅ Nଶሺa1ሻ  8.55 

N20 Electronic excitation e ൅ Nଶ ⟶ e ൅ Nଶሺw1ሻ  8.89 

N21 Electronic excitation e ൅ Nଶ ⟶ e ൅ NଶሺC3ሻ  11.03 

N22 Electronic excitation e ൅ Nଶ ⟶ e ൅ NଶሺE3ሻ  11.87 

N23 Electronic excitation e ൅ Nଶ ⟶ e ൅ Nଶሺaᇱᇱ1ሻ  12.25 

N24 Electronic excitation e ൅ Nଶ ⟶ e ൅ Nଶሺsum	of	singlet	statesሻ  13.0 

N25 Ionization e ൅ Nଶ ⟶ 2e ൅ Nଶ
ା  15.6 

The various collision reactions result in the generation and annihilation of electrons and the 
momentum and energy change of electrons, which are accounted for by the transport coefficients, 
including the total ionization coefficient ߥi, the total attachment coefficient ߥa, the total collision 
frequency ߥc, and the energy loss frequency ܳe. These transport coefficients are critical 
parameters that determine the behavior of the breakdown process and are defined as the 
integration of the corresponding collision cross sections multiplied by the EEDF, over the entire 
energy spectrum as follows [15]:  
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iߥ ൌ Aܰirඨ
2
݉e

න ൭ ෍ ௞ߪ௞ݔ
௞ୀionization

൱ ߝ଴dܨߝ
ஶ

ఌೖ

 (33) 

aߥ ൌ Aܰirඨ
2
݉e

න ൭ ෍ ௞ߪ௞ݔ
௞ୀattachment

൱ ߝ଴dܨߝ
ஶ

ఌೖ

 (34) 

cߥ ൌ Aܰirඨ
2
݉e

න ൭෍ ௞ߪ௞ݔ
௞ୀall

൱ ߝ଴dܨߝ
ஶ

ఌೖ

 (35) 

ܳe ൌ Aܰirඨ
2
݉e

෍
2݉e

௞௞ୀelasticܯ

න ௞ݔ ൤ߪ௞ ൬ߝଶܨ଴ ൅
݇Bܶ
eݍ

dܨ଴
dߝ

൰൨ dߝ
ஶ

ఌೖ

	

											൅ Aܰirඨ
2
݉e

෍ ௞ߝ
௞ୀinelastic

න ߝ଴dܨߝ௞ߪ௞ݔ
ஶ

ఌೖ

 

(36) 

where Aܰir denotes the number density of the ambient air, ݔ௞ and ܯ௞ denote the mole fraction and 
the mass of the target gas species of collision process ݇, respectively, ߪ௞ denotes the cross section 
of collision process ݇, and ܨ଴ denotes the EEDF normalized by 

න ߝ
ଵ
ଶܨ଴ሺߝሻdߝ

ஶ

଴
ൌ 1 (37) 

which has units of eVି
య
మ.

In the above definitions, the collision cross sections are obtained from either analytical 
calculations or experimental measurements and are usually tabulated as functions of electron 
energy.  The EEDF is usually solved from the Boltzmann equation.  For an equilibrium process, 
the EEDF has a Maxwellian distribution which, when normalized by (37), becomes a straight 
line in a logarithmic plot, with the slope being െ1/݇Bܶ.  The high-power breakdown process, 
however, is highly non-equilibrium.  As a result, the Maxwellian distribution is not appropriate 
in describing the electron energy distribution in such a process.  To obtain a proper distribution 
function, the classic two-term approximation can be used to solve the Boltzmann equation taking 
into consideration the breakdown process, where the electron distribution function ݂ is expanded 
in terms of spherical harmonics as [15] 

݂ሺ࢘, ࢜, ሻݐ ൌ
1
ߨ2

ቀ
݉e

2
ቁ
ଷ
ଶ
݊ሺ࢘, ሻߝ଴ሺܨሻሾݐ ൅ ሻߝଵሺܨ cos  ሿ (38)ߠ

where ܨ଴ is the EEDF representing the isotropic part of the electron distribution ݂ and ܨଵ is the 
anisotropic perturbation of ݂.  Once the proper EEDF is obtained, it can be used to integrate with 
the corresponding cross sections to calculate the transport coefficients, which are then used in the 
five-moment model to calculate the macroscopic fluid parameters.  
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3.2 Coupled Electromagnetics--Plasma System 

The high-power air breakdown process can be described by the following coupled 
electromagnetic--plasma system 

߳
ࡱ߲
ݐ߲

െ ࡴൈ׏ ൌ െݍe݊(39) ࢁ 

ߤ
ࡴ߲
ݐ߲

൅ ࡱൈ׏ ൌ 0 (40) 

߲݊
ݐ߲

൅ ׏ ∙ ሺ݊ࢁሻ ൌ ሺߥi െ  aሻ݊ (41)ߥ

ࢁ߲݊
ݐ߲

൅ ׏ ∙ ൬݊ࢁࢁ ൅
1
݉e

ܲॴ൰ ൌ
eݍ
݉e

ሺ݊ࡱ ൅ ሻ࡮ൈࢁ݊ െ  (42) ࢁc݊ߥ

߲݊ࣟ
ݐ߲

൅ ׏ ∙ ሾࢁሺ݊ࣟ ൅ ܲሻሿ ൌ ࡱeݍ ∙ ࢁ݊ െ ܳe݊ (43) 

In the above equations, ߳  and ߤ  denote the permittivity and permeability of the medium, 
respectively.  The electric and magnetic fields ࡱ and ࡴ are governed by Maxwell’s equations (39) 
and (40), while the electron density ݊, mean velocity ࢁ, mean energy ࣟ and pressure ܲ are 
governed by the five-moment plasma fluid equations (41)--(43), which are essentially the 
compressible Euler equations in fluid dynamics.  As described in the preceding section, in order 
to close the system, the heat flux is neglected and the scalar closure is applied to relate the energy 

and the pressure as ݊ࣟ ൌ ௉

ఊିଵ
൅ ଵ

ଶ
݉eܷ݊ଶ. 

3.3 The DGTD Solution of the Coupled System 

To solve the coupled equations using the DGTD method, both Maxwell’s and the Euler 
equations are first written uniformly into the following conservation form 

ु
ࡳ߲
ݐ߲

൅ ׏ ∙ ृሺࡳሻ ൌ  ሻ (44)ࡳሺࡿ

where ु denotes the material parameter tensor, ࡳ denotes the unknown quantity vector which 
consists of the conservative variables, ृ denotes the physical flux tensor and ࡿ denotes the 
source term. 

The strong form of these governing equations can then be expressed as 

න ݈௜ु
ࡳ߲
ݐ߲

dܸ
௏೐

ൌ െන ݈௜	׏ ∙ ृሺࡳሻ	dܸ
௏೐

െ ර ݈௜ሺृ∗ െ ृሻ ∙ dܵ	ෝ࢔
డ௏೐

൅ න ݈௜	ࡿሺࡳሻ	dܸ
௏೐

 (45) 

where ݈௜ stands for the testing function defined in the tetrahedral element ܸ௘  and ሺृ∗ െ ृ ሻ ∙ ࢔ ෝ 
refers to the total flux defined on the boundary of each tetrahedral element. 



12 

Approved for public release; distribution is unlimited. 

3.3.1 Maxwell’s Equations 

For Maxwell’s equations, the material parameter tensor is 

ु ൌ diagሼ߳, ߳, ߳, ,ߤ ,ߤ  ሽ (46)ߤ

the conservative variables are simply chosen as (with T being the transpose operator) 

ࡳ ൌ ሺܧଵ, ,ଶܧ ,ଷܧ ,ଵܪ ,ଶܪ  ଷሻT (47)ܪ

the flux tensor is 

ृ ൌ

ۉ

ۈ
ۈ
ۇ

0 െܪଷ ଶܪ
ଷܪ 0 െܪଵ
െܪଶ ଵܪ 0
0 ଷܧ െܧଶ
െܧଷ 0 ଵܧ
ଶܧ െܧଵ 0 ی

ۋ
ۋ
ۊ

(48) 

and the source term is 

ࡿ ൌ ൫െݍeܷ݊௫,െݍeܷ݊௬,െݍe݊ ௭ܷ, 0,0,0൯
T
 (49)

Due to their hyperbolic property, the upwind flux can be used for Maxwell’s equations [14], [18] 

ሺृ∗ െ ृሻ ∙ ෝ࢔ ൌ

ۏ
ێ
ێ
ۍ
1
〈ܻ〉

ሺܻା	࢔ෝൈۤۥࡱ ൅ ሻۥࡴෝൈۤ࢔ෝൈ࢔

1
〈ܼ〉

ሺܼା	࢔ෝൈۤۥࡴ െ ሻۥࡱෝൈۤ࢔ෝൈ࢔
ے
ۑ
ۑ
ې

(50) 

In the above expression, the addition 〈∙〉 and jump ۤ∙ۥ functions are defined as follows 

〈ܽ〉 ൌ ܽା ൅ ۥܽۤ              ,ିܽ ൌ ܽା െ ܽି (51) 

where the superscripts െ and ൅ indicate the inside and the outside of a surface, respectively.  
Note that these definitions apply to both scalar and vector variables.  

3.3.2 Euler’s Equations 

For Euler’s equations, ु is an identity tensor, the conservative variables are chosen as 

ࡳ ൌ ൫݊, ܷ݊௫, ܷ݊௬, ݊ ௭ܷ, ݊ࣟ൯
T (52) 
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Once these conservative variables are obtained, the primitive variables can be obtained as ࢁ ൌ

ࣟ ,݊/ࢁ݊ ൌ ݊ࣟ/݊, and ܲ ൌ ሺߛ െ 1ሻ ቀ݊ࣟ െ ଵ

ଶ
݉eܷ݊ଶቁ, which are needed in the calculation of the 

flux tensor 

ृ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

ܷ݊௫ ܷ݊௬ ݊ ௭ܷ

ܷ݊௫ଶ ൅
1
݉e

ܲ ܷ݊௫ܷ௬ ܷ݊௫ ௭ܷ

ܷ݊௫ܷ௬ ܷ݊௬ଶ ൅
1
݉e

ܲ ܷ݊௬ ௭ܷ

ܷ݊௫ ௭ܷ ܷ݊௬ ௭ܷ ݊ ௭ܷ
ଶ ൅

1
݉e

ܲ

ܷ௫ሺ݊ࣟ ൅ ܲሻ ܷ௬ሺ݊ࣟ ൅ ܲሻ ௭ܷሺ݊ࣟ ൅ ܲሻی

ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

(53) 

and the source term 

ࡿ ൌ ൮

ሾߥiሺࣟሻ െ aሺࣟሻሿ݊ߥ
eݍ
݉e

ሾ݊ሺࡱ ൅ incሻࡱ ൅ ࡮ൈሺࢁ݊ ൅ incሻሿ࡮ െ ࢁcሺࣟሻ݊ߥ

ࡱeሺݍ ൅ incሻࡱ ∙ ࢁ݊ െ ܳeሺࣟሻ݊

൲ (54) 

Here, ࡱinc and ࡮inc stand for the electric field and magnetic flux of the incident high-power 
pulse, respectively.  The transport coefficients are all functions of the mean energy ࣟ and can be 
obtained by interpolating the tabulated values calculated using the method introduced in the 
preceding section.  

To solve the strong form (45) of the Euler equations, the local Lax-Friedrichs flux [18] 

ሺृ∗ െ ृሻ ∙ ෝ࢔ ൌ
1
2
ሼۤृۥ ∙ ෝ࢔ െ  ሽ (55)ۥࡳۤߣ

can be used, where 

ߣ ൌ max
షሽࡳ,శࡳሼ∋ࢍ

ቐ|ࢁሺࢍሻ| ൅ ඨߛ
ܲሺࢍሻ

݉e݊ሺࢍሻ
ቑ (56) 

is the characteristic velocity of Euler’s equations. The resulting ordinary differential equations 
from both Maxwell’s and Euler’s equations are integrated in time using the Runge-Kutta method 
to obtain the time-domain responses and the coupling between these two physics is carried out 
through the source terms (49) and (54). 
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4.0 RESULTS AND DISCUSSION 

In this section, several examples are given to illustrate the EEDF and transport coefficients 
and to demonstrate the breakdown process and behaviors under different conditions. In all the 
numerical examples, the gas under consideration is ambient air, which is assumed to consist of 
80% nitrogen and 20% oxygen, with in total 42 different (elastic and inelastic) collision processes 
listed in Table 1 and Table 2.  

4.1 EEDF & Transport Coefficients 

First, the Maxwellian and non-Maxwellian EEDFs at different mean energy are shown in this 
section to demonstrate their distinct difference. As seen in Figure 1, the EEDFs with the 
Maxwellian distribution are all straight lines in the semi-log plot, indicating that the number of 
electrons decreases exponentially as the energy increases. The non-Maxwellian EEDFs obtained 
by solving the Boltzmann equation using the BOLSIG+ package [15] however, decrease much 
faster as the energy increases, which indicates that fewer electrons have higher energies in a non-
equilibrium case. The higher energy tail of the Maxwellian EEDF results in a larger total 
ionization frequency ߥi െ ߥ a when the mean energy is higher than 1 eV, as shown in Figure 2a. 
The total collision (Figure 2b) and power loss (Figure 2c) frequencies for the Maxwellian EEDF 
are also larger than the non-Maxwellian EEDF at lower mean energies.  

(a)                                                                        (b) 
Figure 1.  The Maxwellian and Non-Maxwellian EEDFs at a Mean Energy of (a) 1 eV and 

(b) 10 eV 
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(a) (b) 

(c) 
Figure 2.  The Transport Coefficients as Functions of the Mean Energy, Calculated 

Using the Maxwellian and Non-Maxwellian EEDFs.  (a) Total Ionization Frequency, (b) 
Total Collision Frequency and (c) Power Loss Frequency 

4.2 Air Breakdown Using Different EEDFs 

To demonstrate the effects of different EEDFs in the prediction of air breakdown, a numerical 
example is presented in this section, where a set of 5.5-MV/m, 200-MHz and y-polarized 
modulated difference-of-double-exponentials (DEXP) pulse [37] traveling through air is 
considered.  As illustrated in Figure 3, the simulation domain is 30 m long in the z-direction 
which is truncated with the absorbing boundary condition (ABC) and 0.5 m in both the x- and the 
y-directions which are truncated with the perfect electric and magnetic conductors, respectively. 
The initial electron density in the air is set as 10଺/mଷ.  The ambient temperature of the air is set 
as the room temperature at 300 K and the ambient pressures under consideration is 760 Torr. 
Figure 4 presents the simulated results using the Maxwellian and non-Maxwellian EEDFs. 
Clearly, the electric field distribution obtained using the non-Maxwellian EEDF (Figure 4a) 
remains undisturbed, which is the same as the pulse traveling in the vacuum.  However, when the 
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Maxwellian EEDF is used to estimate the transport coefficients, the higher energy tail results in 
larger ionization coefficient which leads to a larger increase of the electron density, as shown in 
Figure 4c. The electron density obtained by the Maxwellian EEDF on the plateau is about 100 
times larger than that obtained by the non-Maxwellian EEDF. This results in a much larger 
absorption of the incident field and leads to the tail erosion of the incident HPM pulse, as can be 
seen in Figure 4a. Other physical parameters, including the electron velocity, energy and 
temperature, also differ significantly between the results obtained from the Maxwellian and non-
Maxwellian distributions. Shown in Figure 4b and Figure 4e are the ݖ-component (the 
longitudinal component) of the electric field and electron velocity, respectively. This component 
is present because of the magnetic Lorentz force term ݍe݊ࢁൈ࡮. However, since the ܷ௬ 
component is very small compared to the speed of light, the longitudinal component is very 
small. But it will become significant when the kinetic energy of the electrons is high enough 
when compared to the speed of light.  Moreover, it is interesting to see that both the electric field 
  .௬ and ܷ௬ܧ ௭ and the electron velocity ܷ௭ are positive, which is distinctively different fromܧ
This is due to the fact that the ܷ௬ and ܤ௫ components are always in-phase. Resulted from their 
cross product, the ܷ௭ component becomes purely positive and so does ܧ௭. The positive motion 
pushes the electrons toward the front edge of the plasma and (partially) results in the large 
density gradient on the plasma edge.  Also, it is very clear that the oscillating frequency of ܷ௭ is 
twice as ܷ௬ , due to the higher-order oscillation generated by the magnetic Lorentz force.  

Figure 3.  Illustration of the Solution Domain 
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(a)                (b) 

(c)                (d) 

(e)                                                                (f) 
Figure 4.  The Electric Field, Electron Density, Velocity, Total Energy and Temperature 

Distributions in Space as the Modulated DEXP Pulse Travels Through the 300-K, 760-Torr 
Air.  Comparisons Are Made Between Using the Maxwellian and Non-Maxwellian EEDFs 
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4.3 Air Breakdown Versus Ambient Pressure 

To investigate the breakdown behaviors under different ambient pressures, a set of 300-kV/m, 
200-MHz modulated DEXP pulse traveling through air is considered. As in the previous 
example, the initial electron density in the air is set as 10଺/mଷ and the ambient temperature of 
the air is set as the room temperature at 300 K. The ambient pressures under consideration are 
600 Torr and 10 Torr ,  which  a re  re fer red  to  as  the high- and the low-pressure cases, 
respectively. Figure 5 and Figure 6 present the simulated results for these two cases, 
respectively.  In the high-pressure case, the air does not break down (see Figure 5c) and the HPM 
pulse travels through the air undisturbed.  This can be seen clearly in Figure 5a where the electric 
field distribution in the air is the same as that in the vacuum where no breakdown can take place. 
In the low-pressure case, however, air breakdown takes place and the tail of the HPM pulse 
cannot travel through the air, as can be seen in Figure 6a and Figure 6c. The effect of pressure on 
the air breakdown process can be explained as follows. In the high-pressure case, due to the 
much higher air particle density, the electrons collide much more frequently with air particles, 
which causes more electron momentum and energy loss. Therefore, it is more difficult for the 
electron density to increase in the high-pressure case than in the low-pressure case. Compared to 
the high pressure results shown in Figure 5d and Figure 5f, the electron velocity and energy 
shown in Figure 6d and Figure 6f are increased to a much higher level, which leads to a much 
higher ionization frequency that causes the breakdown. This example has been reported in [38]. 
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(a)                (b) 

(c)                (d) 

(e)                                                                (f) 
Figure 5.  The Electric Field, Electron Density, Velocity, Total Energy and Temperature 

Distributions in Space as the Modulated DEXP Pulse Travels Through the 300-K, 600-Torr 
Air 
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(a)                (b) 

(c)                (d) 

(e)                                                                 (f) 
Figure 6.  The Electric Field, Electron Density, Velocity, Total Energy and Temperature 

Distributions in Space as the Modulated DEXP Pulse Travels Through the 300-K, 10-Torr 
Air 
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Next, the breakdown time as a function of ambient pressure is calculated and presented in 
Figure 7. The breakdown time is usually defined as the time needed for the electron density to 
increase to 10଼  times its initial value [39]. In this investigation, a 4.23-MV/m, 2.82-GHz 
sinusoidal wave travels through air and causes the breakdown. The initial electron density in the 
air is set as 10଺/mଷ and the ambient temperature of the air is set as the room temperature at 300 
K.  In Figure 7, the air breakdown time versus ambient pressure is presented and compared with 
reference results obtained by a particle-in-cell with Monte-Carlo collision (PIC-MCC) simulation 
[39], [40] and a fluid simulation with a modified EEDF [9]. Excellent agreement is observed, 
which validates our implementation of the coupled DGTD solver.  

Figure 7.  Breakdown Time in Air at 4.23 MV/m and 2.82 GHz. The Results From PIC-
MCC Simulations and a Fluid Model With a Modified EEDF Are Provided as References 

4.4 Plasma Shielding Effect 

Air breakdown and plasma shielding triggered by geometry is demonstrated in this example. 
As shown in Figure 8a, the solution domain considered in this example is a parallel plate 
waveguide with a metallic wall placed between the two parallel plates, which forms a rectangular 
aperture (denoted in red in the figure). The solution domain is truncated from the left and the 
right using the ABC.  A 25-GHz, 2.0-MV/m and vertically (the ݕ direction) polarized plane wave 
with a tapered sinusoidal temporal profile is launched from the left boundary and propagates 
toward the right direction (the ݖ direction).  A 100-torr, 300-K air is assumed to be confined in 
the aperture area, with the rest of the domain filled with vacuum. The initial spatial profile of the 
electron density is set to be sinusoidal in both ݕ and ݖ directions, which reaches its maximum 
value of 10ଵହ/mଷ at the center of the aperture. Two observation points P1 (ݔ ൌ ݕ ൌ 0 . 0  mm, 
ݖ ൌ 0 . 0  mm) and P2 (ݔ ൌ ݕ ൌ 0 . 0  mm, ݖ ൌ 2.81 mm) are also shown in Figure 8a.  

Besides the five-moment model presented in this report, this example has been simulated using 
a simplified diffusion model [14], where only the electron density and velocity were considered. 
It should be pointed out that in the diffusion model, the plasma parameters (ionization, attachment, 
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and momentum transfer frequencies, etc.) were obtained by empirical models based on measured 
data, which were nonlinear functions of the reduced effective electric field ܧeff⁄ܲ, whereas in the 
five-moment model, the plasma parameters are obtained by integrating collision cross sections 
with non-Maxwellian EEDF, which are nonlinear functions of the electron energy. As a result, 
these two models are very different in terms of the physical quantities under consideration, 
governing equations and plasma parameters calculation.  

Shown in Figure 8b, Figure 8c and Figure 8e are the electric fields recorded at P1 and P2 and 
the electron density evolution recorded at P1. The comparisons are made between these two 
different models. Excellent agreements are achieved, which show that the physical quantities of 
interest can be obtained by very different physical models. Shown in Figure 8d is the comparison 
of electric fields recorded at P1 and P2.  Apparently, after breakdown takes place at 0.5 ns, the 
incident fields are blocked and only a small portion of energy can transmit to the observation 
point P2.  In Figure 8f, the electron energy and temperature at P1 with respect to time are given, 
which provide more physical insight of the process and fidelity of the simulation.  
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(a)                (b) 

(c)                (d) 

(e)                                                                (f) 
Figure 8.  Microwave Breakdown and Plasma Shielding in a Metallic Aperture.  (a) 
Illustration of the Solution Domain.  (b) and (c) Comparison of the Electric Fields 

Simulated Using the Diffusion Model and the Five-Moment Model, Recorded at P1 and 
P2, Respectively.  (d) Temporal Response of the Electric Fields Recorded at P1 and P2.  (e) 

Temporal Evolution of the Electron Density Recorded at P1.   (f) Temporal Evolution of 
the Electron Energy and Temperature Recorded at P1 
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4.5 Air Breakdown Around PEC Objects 

As the last example, air breakdown around two perfectly electric conducting (PEC) cylinders 
are simulated using the five-moment model. This example is designed to demonstrate the plasma 
pattern formation and the scattering characteristic change after air breakdown. Here, two PEC 
cylinders with the same radius of 0.25 mm are placed in free space.  A 5.5-MV/m, 200-GHz and 
 direction. Shown in Figure 9 is the scattered-ݖ polarized plane wave is incident from the-ݕ
electric field distribution when the entire simulation domain is filled with vacuum, which serves 
as the baseline for comparison. When the space is filled with 100-Torr, 300-K ambient air with 
10଺/mଷ initial electrons, the incident HPM triggers breakdown, first between the two PEC 
cylinders where the field is intensified. Due to the mutual couplings among the 
electromagnetic fields, the PEC scatterers and the plasma fluid, the ionized electrons 
follow a similar distribution as the scattered field pattern, as shown in Figure 10c, Figure 10e and 
Figure 10f.  At 0.25 ns, although increased by 11 orders of magnitude, the electron density is still 
low, with a maximum density being 1.23ൈ10ଵ଻/mଷ. The electron oscillation does not contribute 
significantly to the scattered electric field.  As a result, the electric fields presented in Figure 10a 
and Figure 10b are very similar to those given in Figure 9.  As the breakdown process continues, 
the electron density and energy increase further.  At 0.5 ns, the maximum electron density has 
increased by another 5 orders of magnitude, reaching as high as 5.92ൈ10ଶଶ/mଷ (Figure 11c). 
The strong electron oscillation starts to alter the scattered field pattern.  As can be seen in Figure 
11a and Figure 11b, the scattered fields are significantly different from those recorded at 0.25 ns 
and those in the vacuum case.  Due to the strong electron radiation, certain micro-patterns are 
formed in Figure 11, which have a characteristic length much smaller than the wavelength of the 
incident electromagnetic field. This is an illustration of the multiscale feature caused by the 
complicated electromagnetic--plasma interactions, which can only be captured by a numerical 
method with a high spatial resolution. 

                     (a)                                                                          (b) 
Figure 9.  Scattered Electric Field Distribution in Vacuum.  (a) ܧ௬; (b) ܧ௭  
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(a)                (b) 

(c)                (d) 

(e)                                                                (f) 
Figure 10.  Electric Field and Plasma Quantities Observed at 0.25 ns.  (a)  ܧ௬; (b) ܧ௭; (c) 
Electron Density; (d) The Magnitude of the Electron Velocity; (e) Electron Energy and 

(f) Electron Temperature  
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(a)                (b) 

(c)                (d) 

(e)                                                                (f) 
Figure 11.  Electric Field and Plasma Quantities Observed at 0.5 ns.  (a) ܧ௬; (b) ܧ௭; (c) 
Electron Density; (d) The Magnitude of the Electron Velocity; (e) Electron Energy and 

(f) Electron Temperature  

To better understand the physical process, the plasma quantities and secondary fields are plotted 
along the ݖ-axis in Figure 12. As shown in Figure 12a, the electron density follows the scattered 
wave pattern in the lit region (ݖ ൏ 0  mm).  At 0.25 ns, the electron energy has a highest peak at 
around ݖ ൌ 0 mm (Figure 12b), which leads to the fastest increase of the electron density in this 
region. When its density reaches 10ଶଶ/mଷ at 0.5 ns, the electrons start to shield the 
electromagnetic field.  This results in a strong reflection of the field and leads to a higher energy 
peak at around ݖ ൌ െ0. 6 mm, which will cause a stronger ionization and faster increase of the 
electron density in that region. When this process continues, density spikes will gradually form 
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and propagate toward the source of the incident field.  This phenomenon is presented in Figure 
13 and Figure 14 in two and one dimension, respectively, where the process of the plasma pattern 
formation can be observed very clearly. Such a filamentary plasma array formation was also 
observed in experiments [3]-[5], in which a similar plasma pattern has been recorded by a high-
speed camera. From these two figures, the propagation velocity of the plasma filaments can be 
estimated to be about 1500 km/s, which is on the same order of the theoretic estimation of 2ඥܦeߥi 
[6] where ܦe and ߥi are the free electron diffusion and the ionization coefficients, respectively. 
From Figure 15, the spacing between two adjacent filaments can be seen very clearly, which is 
about a quarter wavelength ߣ଴ 4⁄ ൌ 0.375 mm in free space. This is because the strong field 
reflection from the filaments results in a standing wave pattern in the lit region, which generates 
plasma filaments with a similar standing wave pattern.  
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(a)                (b) 

(c)                (d) 

(e)                                                                (f) 
Figure 12.  Comparisons of Plasma Quantities and the Secondary Electromagnetic Fields 
Observed at 0.25 and 0.50 ns Along the ࢠ-Axis.  (a) Electron Density; (b) Electron Energy; 
(c) Electron Temperature; (d) Electron Velocity ܷ௬; (e) Electric Field ܧ௬ and (f) Magnetic 

Field ܪ௫  
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(a) (b)      (c)    (d) 

(e)                                   (f)                                   (g)                                  (h) 
Figure 13.  Electron Density Distribution in Linear Scale, Observed at (a) 0.25 ns; (b) 0.50 

ns; (c) 0.75 ns; (d) 1.00 ns; (e) 1.25 ns; (f) 1.50 ns; (g) 1.75 ns; and h) 2.00 ns  
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Figure 14.  Electron Density Distribution Along the ࢠ-Axis, in Linear Scale, Observed at 
Different Time Instants 

(a)                                                                            (b) 
Figure 15.  Spacing of the Plasma Filaments.  (a) 2D Plot; (b) 1D Plot 
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It is shown in this section that this very interesting and highly complicated physical 
phenomenon can be reproduced successfully with the proposed numerical method, through which 
many physical details can be revealed.  

5.0 CONCLUSIONS 

In this report, the five-moment plasma fluid model has been employed to develop a DGTD-
based simulation of the HPM breakdown in air, which is able to provide more physical insight 
with a higher fidelity compared to simpler models. To characterize of the highly non-equilibrium 
breakdown process, the transport coefficients are calculated using the non-Maxwellian EEDFs 
solved from the BOLSIG+ package. The self-consistent Maxwell--Euler system equations have 
been solved using a coupled DGTD method, where the upwind flux is used for Maxwell’s 
equations and the Lax-Friedrichs flux is used for Euler’s equations. The employment of the DGTD 
method with higher-order nodal basis functions provides a sufficient spatial resolution to capture 
the fast-varying micro-patterns of the electromagnetic fields and the plasma fluids. Several 
numerical examples have been presented to show the difference between the use of the Maxwellian 
and non-Maxwellian EEDFs, illustrate the air breakdown behavior under different ambient 
pressures, and demonstrate the plasma formation and electromagnetic shielding phenomena. With 
the method presented in this report, many interesting physical phenomena can be modeled and 
simulated with a high fidelity.  
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 

 inc magnetic flux of the incident high-power pulse࡮
ु material parameter tensor 
 e free electron diffusion coefficientܦ
DEXP difference of double exponentials 
DGTD discontinuous Galerkin time-domain 
ࣟ mean energy 
 electric field ࡱ
EEDF electron energy distribution function 
effܧ ܲ⁄  reduced effective electric field 
 inc electric field of the incident high-power pulseࡱ
ृ physical flux tensor 
 Lorentz force ࡲ
 ଴ EEDFܨ
FDTD finite-difference time-domain 
FETD finite-element time-domain 
݂ electron distribution function 
 conservative variables (unknown quantity vector) ࡳ
GPU graphic processing unit 
ࡴ magnetic field 
HPM high-power microwave 
ॴ identity tensor 
݇B Boltzmann constant 
LHS left-hand side 
݈௜ testing function 
 ݇ ௞ mass of the target gas species of collision processܯ
݉e electron mass at rest 

Aܰir number density of the ambient air 
݊ particle density 
ℙ pressure tensor 
ܲ scalar pressure 
PEC  perfectly electric conducting 
PIC-MCC particle-in-cell with Monte-Carlo collision 
 heat flux vector ࡽ
ܳe electron energy loss frequency 
 e electron chargeݍ
RHS  right-hand side 
࢘ ൌ ሺݔ, ,ݕ  ሻ physical spaceݖ
ࡿ source term of conservation equations 
ܶ temperature 
 mean velocity ࢁ
௘ܸ tetrahedral element 
࢜ ൌ ൫ݒ௫, ,௬ݒ  ௭൯ velocity spaceݒ
 ݇ ௞ mole fraction of the target gas species of collision processݔ
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 ௞ threshold energyߝ
߳ permittivity of the medium 
Φ macroscopically averaged quantity 
 ratio of specific heats ߛ
 characteristic velocity ߣ
 ଴ wavelength in free spaceߣ
 permeability of the medium ߤ
 a attachment frequencyߥ
 c total collision frequencyߥ
 i ionization frequencyߥ
 ݇ ௞ cross section of collision processߪ
ሺृ∗ െ ृሻ ∙  ෝ total flux࢔
〈∙〉 addition function 
 jump function ۥ∙ۤ
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